SINTEF

Outline

- 1. Introduction to Dissimilar Material Joining
- 2. Hybrid Structures
- 3. Review of Joining Processes / Technologies
- 4. Joint Characterization / Testing
- Process and Performance Modeling
- 6. Process Selection
- 7. Future Research Challenges

Definitions for Joining of dissimilar materials

- Joining: Creating a bond of some from between materials or components to achieve a specific physical performance
 - Mechanical
 - Chemical
 - Thermal fusion
 - Solid state
 - Combination/hybrid

- Dissimilar materials: Materials difficult to join because of their different chemical compositions and/or physical properties
- Hybrid structures: Two or more components of dissimilar materials joined together to achieve a specific physical performance

Mixed Material Joining: Bronze Age Bimetallic Swords

H. Lian, "The Chinese Traditional Casting Techniques", 69th World Foundry Congress, Hangzhou, China, Oct. 16-20, 2010

Hybrid structures

- Lightweight and high performance structures
- Integrating an increased number of functions in each part
- Different properties of different materials are jointly utilised to achieve the product performance needed
- Materials will interact with each other in new ways
- Need the ability to simultaneously optimize material choice, geometry, production processes

Boeing 787 Dreamliner 50% composite, 20% aluminium, 15% titanium, 10% steel 5% other

Regulatory Requirements

Personal Transportation Driving Mixed Material Product Solutions

High Strength Steels 11%

Adhesive joining

- Difficult to disassemble
- Surface preparation requirements
- Time needed for polymerization
- Limited thermal resistance
- Bond attenuation/degradation from atmospheric and chemical agents
- Joint design

Mechanical Fastening

- Screw joints
- FlowDrill Screws
- Clinching
- Friction Stir Blind Riveting
- Self-Piercing Riveting
- Sewing
- Plastic deformation

- Pro: Simple, no fusion, easy disassembly, automation,....
- Against: Stresses/fatigue, long-term capabilities, added mass, corrosion, ...

Examples, Mechanical Fastening

Flow Drill Screws

Friction Stir Blind Rivet

Head Engagement

Restraining force induced by mandrel

Multimaterial Fusion Welding Challenges

- Porosity
- Intermetallic Formation
- Pre-existing Oxide Layers
- Galvanic corrotion
- Dissassembly

Examples: Thermal fusion joining

Spark Plasma Sintering/ Pulsed Electric Current Sintering: Sintering of high-end materials such as tungsten carbide and ceramics

High Energy Beam Welding: Laser, electron-beam: Conduction mode (sheets) or Keyhole mode (deeper penetration)

- Brazing and soldering: Well-known technology used to join ceramics to metals, dissimilar incompatible metals, complicated geometry
- Resistance Spot Welding (RSW)
- Arc Welding

Chuvildeev, et al., 2014,

Al-Steel RSW

	Melting point (°C)	Thermal conductivity (W/(m.K))	Electrical resistivity (10 ⁻ ⁶ Ω.cm)	Density (Kg/cm³)	Thermal expansion rate (10 ⁻⁶ m/(m.K))
Al alloys	660	205-250	2.82	2700	22.2
Steels	1425 - 1540	47-54	14.3	7870	13.0

Important to know temperature field in the process!

- Heat imbalance
- Formation of brittle intermetallic compound at Al-steel interface
- Cracking and porosity in Al
- Al expulsion/thinning

Laser Welding

T. Solchenbach, et al.

European Automotive Laser Applications 2013: 14th European Expert Conference, Bad Nauheim, Germany, February 19-20, 2013

Solid state joining processes

- Friction welding
- Cold Welding
- Friction Stir Welding
- Ultrasonic welding

Friction Stir Welding

- Steel-AL, AL-Thermoplastics polymers, Al-Cu
- Small HES, non-consumable tool, little post-processing, residual stresses, corrosion resistance, no filler material, no oxide removal, small IMC

FSW of Aluminium and Steel on Honda Accord front subframe from 2013 (www.honda.com)

Hybrid processes

Joining effect typically combination of mechanical and the adhesive effect of the polymer wetting the metal surface, or welding/ cold metal bonding

- Rivet-Weld
- Friction Riveting
- Friction Spot Welding
- Injection over-moulding
- Adhesive/mechanical

Injection over-moulding

Characterization and testing of multi-material joints

- Pressure
- amplitude
- Time
-

Process
Parameters

Joint
Attributes

Process
Parameters

Joint
Performance

- Bond length
- Post weld hardness
- Weld affected zone
-

- Tensile strength
- Peel strength
- Fatigue strength
-

Modeling

Process
Parameters

Physics based models, e.g., FEM

Data based models: e.g., Neural Networks

Joint Attributes

Joint Performance

Physics as well as data based models: e.g., FEM, Neural Networks

Selection of Joining Methods

- Design of the joint, selected mateirials and product/structure
- Joining process conditions
- Health and environment safety costs (HES)
- (Flexible) automation and DFx
- Sustainability
- Profitability and robustness

Dissi	imilar materials	Joining	Joining options in
Material 1	Material 2	Difficulty	perferred order
	Metal	1-5	A,B,S,M,F,N
Metal	Ceramic	3-5	B,A,N,M
	IMC	3-5	B,N,M,F
	Termoplastic polymer	1-3	A,M
	Thermoset FR polymer	1-3	A,M
	Ceramic	2-4	A,M,B,N,F
Ceramic	IMC	3-5	B,M,F
	Polymer	2	А
Termoplastic	Termoplastic polymer	1-2	A,F/N, M
polymer	Thermoset FR polymer	1-4	A,F/N, M

Research Challenges for dissimilar materials joining

- Increased understanding of basic bonding mechanisms
- More advanced testing methods and modelling related to lifetime, ageing and fatigue
- Calibration and validation of simulation models
- Identify critical and/or main mechanisms for failure
- Identification of critical process, material mismatch situations and/or main mechanisms for failure
- Bridge the gap between modelling scales from atomistic level to macro-level
- Standardisation of testing and characterization of dissimilar materials joints

Manufuture Joining sub-platform Updated Strategic Research Agenda

Updated Survey

Timeline of Priorities Developed

TRL Identified

Digitalization of Joining

Research Priorities Identified

More information:

- Manufuture Sub-Platform for joining: http://www.joining-platform.com/
- CIRP keynote paper on Joining of Dissimilar Materials

CIRP Annals - Manufacturing Technology 64 (2015) 679-699

Contents lists available at ScienceDirect

CIRP Annals - Manufacturing Technology

Joining of dissimilar materials

K. Martinsen (3)^{a,b,*}, S.J. Hu (1)^c, B.E. Carlson ^d

^a Sintef Raufoss Manufacturing, Raufoss, Norway

^b Gjøvik University College, Gjøvik, Norway

^c Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI, USA

d General Motors R&D, Detroit, MI, USA